
Scheduling support for Hard Real-Time Ethernet Networking

Jork Loeser
TU Dresden, Germany

jork@os.inf.tu-dresden.de

Jean Wolter
Dresden, Germany

jw5@os.inf.tu-dresden.de

Abstract

Previous results on traffic shaping on Switched Ethernet
technology have demonstrated its practicability and effective-
ness for hard real-time communication [6]. With nodes dedi-
cated to communication the application-to-application delays
on a 5-node network were reported to be less than a millisec-
ond with both Fast Ethernet and Gigabit Ethernet technology
with a link utilization of 93% and 49%.

In this paper we extend the work and analyze the network
performance that can be achieved on complex systems where
resources for the network management are restricted by other
real-time tasks. Specifically, we analyze the scheduling needs
of different implementations of the traffic shaper, a key compo-
nent of hard real-time networking on Switched Ethernet. We
derive the performance of the different implementations with
respect to achievable network delays and the implementation
costs with respect to CPU utilization.

1 Motivation

In [6] we demonstrated the practicability and effec-
tiveness of using software-implemented traffic shaping on
Switched Ethernet to achieve hard real-time communication
with bounded delays and guaranteed bandwidths. To do so,
we used the DROPS real-time system [3, 2], which offers
static priorities. We implemented a real-time network driver
which performs the required traffic shaping ensuring that the
nodes do not flood the network. The threads of the network
driver were given the highest priorities in the system prevent-
ing interference of other applications and achieving minimal
scheduler-induced delays. However, in modular and dynamic
systems where real-time applications apply for being started
and stopped at arbitrary points in time, resource consumption
must be bounded and threads must be scheduled accordingly.
In this paper, we propose different traffic shaper implementa-
tions to ensure the nodes conformance to their network traf-
fic contracts. We analyze the scheduling needs of these im-
plementations and estimate their performance with respect to
achievable network delays and the implementation costs with
respect to CPU utilization.

2 Background

Switched Ethernet is a star-based topology providing a pri-
vate collision domain to each of the ports of a switch. Col-
lisions, a phenomenon of CSMA/CD Ethernet, do not oc-
cur. However, because Ethernet switches lack build-in polic-
ing features, nodes connected by Switched Ethernet need to be
cooperative for bandwidth and jitter control. The key idea is
to make use of buffers at the switches, that compensate for
concurrent arrival of data from different nodes destined for
the same target. Figure 1 shows a typical Ethernet switch.
The switch has N=4 receive ports, control logic, buffer and
N queued transmit ports. When a frame arrives at the switch,
the control logic determines the transmit port and tries to trans-
mit the frame immediately. If the port is busy because another
frame is already being sent, the frame is stored in the trans-
mit ports queue, which is a first-in first-out (FIFO) queue. If
no more memory is available for storing, the received frame is
dropped.

data from nodes

data to nodes

high−performance bus/demux

Figure 1: Buffering inside
an output-queueing Switch.
If queueing a frame is nec-
essary, memory is allocated
from a shared memory pool
and assigned to the corre-
sponding queue.

Bounding delays

The buffered packets in the switch result in a delay, which is
specific to each output port and depends on the characteristics
of the traffic sent to that output port. We use Le Boudec’s net-
work calculus [1] to calculate the delay bound for a specific
output port. For this, we describe the traffic arriving at a spe-
cific switch input port k to be forwarded to this output port by
a so-called T-SPEC

�
C � M � rk � bk � . C is the network capacity,

this is 100MBit/s for Fast Ethernet and 1000Mbit/s for Gigabit
Ethernet. M is the maximum frame size, 1514 bytes for Eth-
ernet. rk describes the average bandwidth and bk allows for
some burstiness. The T-SPEC means that in any time interval
of length t not more than min

�
C � t � M � rk � t � bk � bytes arrive

at input port k for the considered output port.
For all k � 1 ����� N we define gk as gk � bk � M

C � rk
and gmax as

1

the maximum of all gk. tmux denotes a switch-specific parame-
ter describing the maximum delay (without queueing effects)
after which the switch starts to transmit a frame once it is re-
ceived.

According to [5] the maximum delay tswitch of a frame for
the considered output port at the switch is

tswitch �
N

∑
k � 1

bk

C � gmax � �
1 �

N

∑
k � 1

rk

C � � tmux � (1)

Shaping the traffic

With Ethernet, nodes must cooperate to ensure that traffic leav-
ing a node conforms to previously defined T-SPECs. There-
fore, all sending nodes apply traffic shaping to all transmitted
data.

We implemented the network access model in our own net-
work stack, but extended the stack to manage multiple con-
nections at each node, with one traffic shaper per connection.
This way the network stack can give different bandwidth guar-
antees to the various applications at one node. Figure 2 illus-
trates this: The real-time network driver (RT-Net driver) di-
rectly interacts with the network interface card (NIC). It uses
per-connection traffic shapers running in separated threads. To
its clients the driver offers connection-oriented packet-based
interfaces that account the transmitted traffic. The abstraction
seen by the clients is that of a leased line: a client i may send
its packets with a maximum bandwidth bi. Packets exceeding
the bandwidth might be queued and being sent later instead of
being sent immediately.

NIC

data from applications

Connection buffers

Shapers

NIC buffer

(input buffers)

(output buffers)

Figure 2:
Multiplexing of
multiple shaped
connections to
one NIC.

Scheduling model

The DROPS real-time system is based on an L4 type micro-
kernel which provides three basic services: (i) address spaces
as protection domains, (ii) threads as abstractions of activi-
ties and (iii) synchronous IPC as communication primitive.
Everything else is implemented at user level. The microker-
nel uses a fixed priority scheduling scheme with round robin
scheduling within the same priority class. It provides a capac-
ity reserves like reservation mechanism by allowing to attach
priority/quantum/period tupels

�
pi � wi � Ti � to threads[7]. At the

begin of each period Ti the kernel sets the priority of the thread
to pi and allows the thread to run on this priority for wi time
units. Before the end of their time quantum, threads can volun-
tarily yield the CPU and wait for the next period. Admission
is done by a user-level admission controller, which assigns the

�
pi � wi � Ti � tuples and can guarantee deadlines Di � Ti using

response time analysis.
The microkernel supports three different execution mod-

els: strictly periodic threads, periodic threads and aperiodic
threads (using the terminology of [4]). While strictly periodic
threads are always released at the begin of their period, peri-
odic threads have a minimal inter-release time after which they
can be released by the arrival of a wakeup event (IPC)1.

3 Traffic Shaper implementations

Figure 2 gives a general idea of traffic shaping at a node:
The sending applications put packets into connection buffers
and signal the availability of the packets to the connection-
specific shaper. Depending on the scheduling model the
shaper either periodically looks into its connection buffer or
wakes up after the client submitted a packet. If packets are
available the shaper takes some of them and moves them to
the output buffer of the network card.

Definition: For the rest of the paper, we call a packet that is
sent by the client of connection i conforming if its timely dis-
tance to the previous sent packet corresponds to the bandwidth
bi of the connection.

Note that if the client suffers a scheduling jitter Ji it may
produce non-conforming packets accidentally. These packets
will experience an additional delay of up to Ji to fit to the
leased line model. Having this in mind, we do not consider
this client-induced delay any longer, but concentrate on con-
forming packets.

Performance of shapers There are multiple ways to im-
plement traffic shapers that generate a token-bucket shaped
stream of rate ri. However, the streams may differ in their
burstiness bi, which can be calculated by

bi � maxt � s � α
�
t � � α

�
s � � ri � �

t � s ��� (2)

with α
�
x � being the amount of data produced by time x (the

term in the braces is the difference between the amount of data
actually sent in this interval and the bucket replenishment in
this interval). From Section 2 we know that this burstiness pa-
rameter essentially influences the delays of the other streams
at the switch, and hence it is an important performance mea-
sure. Another performance measure is the maximum delay of
conforming packets at the shaper.

CPU utilization Another important parameter of the shaper
implementation is its CPU usage and scheduling requirements.
As the shaper is run in its own operating system context,
frequent changes between the applications and the shaper
severely influence the CPU usage. As shown in [6], the CPU
utilization is dominated by the number of shaper invocations:
A node sending with a bandwidth of 32MBit/s used its CPU
to 9% with a shaper-invocation every 1ms, but only to 2.9%
when the shaper was called every 10ms to send larger chunks.

1If the wakeup event comes in to early the kernel delays the release until
the minimal inter-release time is over.

2

The scheduling priority of a shaper thread derived from its
maximum deadline is of importance, too. When the shaper
thread is assigned a high priority to achieve low scheduling
delays, other threads in the system may suffer high scheduling
delays.

3.1 Shaper versions

In the following, we analyze three traffic shaper implemen-
tations:

Strictly periodic shaper This most basic form of a traffic
shaper runs strictly periodically and allows one packet to pass
in each period.

Periodic shaper with data dependency Similar to the
strictly periodic shaper this shaper sends one packet per in-
vocation. But, instead of a strict period it has a minimal inter-
release time. Whenever a packet is ready in the connection
buffer, and the minimal inter-release time has elapsed since
the last invocation, the shaper is started and sends a packet.

Token-bucket shaper This shaper runs strictly periodically
while managing a bucket containing tokens for sending pack-
ets. The bucket is replenished on each invocation by some
amount and the shaper sends up to as much data as there are
tokens in the bucket.

For each shaper, we analyze (i) the maximum delay it adds to
a conforming packet, and (ii) the burstiness parameter bi of the
generated stream.

3.2 Strictly periodic shaper

The straight-forward shaper implementation is a strictly pe-
riodic thread that sends up to one packet per invocation:

strictly-periodic-shaper(T_i, D_i, M) {
set_periodic(T_i)
while (1) {

p = next_packet(); /* 0 of none avail */
if (p!=0) send_packet(p);
next_period();

}
}

With Ti we denote the period of the thread and with Di its
deadline (Di � Ti). To generate a stream with rate ri and packet
size M, Ti must be set to

Ti � M � ri (3)

Figure 3 illustrates the maximum delay that is induced by the
traffic shaper to a conforming packet: The traffic shaper is
activated early in the first period, and the packet is sent just
after this. In the next period, the traffic shaper is activated as
late as possible to just meet the deadline. Thus, the maximum
delay is:

di � Ti � Di (4)

DiiT time
packet injection

traffic shaper activation

Figure 3: Maximum
delay of a packet at the
traffic shaper.

The maximum burst of the generated stream corresponds to
two consecutive packets sent in their minimum distance. This
is Ti � Di, as illustrated in Figure 4.

iT iT
Di iTDi − time

traffic shaper activation
Figure 4: Maximum
burst of the stream gen-
erated by the strictly
periodic shaper.

According to Equation 2, the burstiness parameter of the
generated stream can be calculated as

bi � 2 � M �
�
Ti � Di � � ri � 2 � M � Ti � ri � Di � ri

bi � M � Di � ri (5)

Thus, the generated stream conforms to a
�
ri � M � Di � ri �

token-bucket shaper.

3.3 Periodic shaper with data dependency

If an application is not executed in-phase with the shaper,
that means it can not guarantee that a data packet is gener-
ated immediately before the shaper is activated, the worst-case
delay of the strictly periodic shaper is more than one period.
Modifying the shaper to wait until data is available avoids an
out-of-phase client to miss the send operation of the current
send period (Figure 5). With Ti we now denote the minimal
inter-release time of the thread.

Di

iT

Di time

traffic shaper activation

Figure 5: Maximum
delay induced by the
periodic shaper with
data dependency.

As the traffic shaper thread is guaranteed to be finished
within Di after getting a conforming packet from its client,
the maximum delay di that is induced by the traffic shaper is

di � Di (6)

The burstiness parameter of the generated stream is calcu-
lated the same way as for the strictly periodic shaper.

3.4 Strictly periodic shaper with long periods

To lower the CPU load due to context switches, the period
of the traffic shaper thread can be increased at the cost of larger
bursts and thus larger delays. This modification also favors
systems were the thread period lengths are fixed or harmonic.

The naive approach is to modify the strictly periodic shaper
to send not just one but up to a certain number of packets per
invocation. However, this results in a very coarse granularity

3

of possible bandwidth reservations: For Fast Ethernet and a
period of Ti=1ms, the difference between sending n packets
of 1514 bytes per 1ms period and sending n � 1 packets per
period accumulates to 12.1MBit/s or 1/8 of the overall band-
width.

3.5 Token-bucket shaper

A token-bucket shaper avoids the coarse bandwidth granu-
larity problem identified in the previous section:

token-bucket-shaper(r_i, M, B_i, T_i) {
set_periodic(T_i) ; level = B_i ;
while (1) {

p = next_packet(); /* 0 of none avail */
while(level < M || p==0) do {
next_period() ;
level = min(level + r_i*T_i, B_i) ;
if(!p) p = next_packet();

}
if(p) { send_packet(p) ; level -= M ; }

} }

The input parameters to the algorithm are the rate ri, the packet
size M, the bucket size Bi, the deadline Di and the period Ti.
Note that with the token-bucket shaper, Ti is typically larger
than it is for the shapers from Sections 3.2 and 3.3.

To obtain the worst-case delay of a conforming packet we
argue the same way as we did in Section 3.2, and thus get

di � Ti � Di (7)

Figure 6 illustrates the burstiness bound of the generated
stream: In the first period the maximum amount of data is
sent as late as possible, this is Bi bytes at offset Di within the
period. The following transmission occurs as early as possible
in the period, this is at offset 0, and sends Ti � ri bytes. Thus,
the burstiness parameter is calculated as

bi � Bi � Ti � ri � ri � �
Ti � Di �

bi � Bi � ri � Di (8)

Bi

Ti * ri

Ti * ri

DiBi ri+ *

Di DiTi −
iT iT

time

Figure 6: Obtain-
ing the burstiness pa-
rameter of the stream
generated by the token-
bucket shaper.

Minimum bucket size for the Token-bucket shaper

The bucket must have at least a size that all tokens that may
arrive between the blocking of the shaper (due to missing to-
kens) and its next activation fit into it. When the shaper blocks,
at most M tokens are in the bucket. At the next period the

bucket is replenished by ri � Ti and this must fit into it. Thus,
the minimum bucket size is

Bi � ri � Ti � M (9)

4 Comparison

To give an idea on the impact of the different shapers to the
app-to-app delay, we calculated the maximum time needed for
a conforming packet to be processed by the traffic shaper, to
be sent to the switch and to be processed by the switch and for-
warded to the destination node. We assumed 5 nodes sending
traffic with 16MBit/s to a 6th node over Fast Ethernet. tmux was
set to 45µs as in [6]. C is 12325 bytes/s considering the fram-
ing overhead with 1514 byte frames. For the Token-bucket
shaper we choose periods of Ti=1ms and Ti=10ms for com-
parison. The periods of the other shapers are calculated by
Equation 3. We selected deadlines of Di=200µs and Di=Ti for
comparison.

Shaper Ti Di di � 123µs � tswitch

Strictly periodic 0.76ms 200µs 1.89ms
Ti 2.88ms

Periodic with 0.76ms 200µs 1.13ms
data dependency Ti 2.12ms
Token-bucket 1ms 200µs 2.91ms

Ti 4.33ms
10ms 200µs 18.88ms

Ti 36.28ms

The table illustrates that low scheduling delays and high
invocation frequencies result in moderate networking delays.
However, if the scheduling delays increase, e.g. due to other
high-priority tasks in the system, or if the invocation frequency
of the shapers is decreased to lower the CPU consumption, the
application-to-application-delay increases significantly.

References
[1] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag Lec-

ture Notes in Computer Science volume 2050, July 2001.

[2] C.-J. Hamann, J. Löser, L. Reuther, S. Schönberg, J. Wolter, and
H. Härtig. Quality Assuring Scheduling - Deploying Stochastic Behav-
ior to Improve Resource Utilization. In 22nd IEEE Real-Time Systems
Symposium (RTSS), London, UK, December 2001.

[3] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul. Cooperating
resource managers. In Fifth IEEE Real-Time Technology and Applications
Symposium (RTAS), Vancouver, Canada, June 1999.

[4] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[5] J. Loeser. Buffer Bounds of a FIFO Multiplexer . Technical Report TUD-
FI03-15, Technische Universität Dresden, November 2003.

[6] J. Loeser and H. Haertig. Low-latency hard real-time communication
over switched ethernet. In 16th Euromicro Conference on Real-Time Sys-
tems, Catania, Sicily, July 2004.

[7] Udo Steinberg. Quality-Assuring Scheduling in the Fiasco Microkernel.
Master’s thesis, TU Dresden, March 2004.

4

