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Abstract 
 
Java’s popularity in the real-time embedded 

systems domain has grown significantly over the last 
years. This popularity influenced the definition of the 
Real-Time Specification for Java (RTSJ), which is a 
high-level programming interface for real-time 
applications written in Java. This paper describes an 
RTJS-based API, which aims to facilitate the 
development of real-time embedded systems by 
including high-level constructs for concurrent real-
time computation.Further, the developed application 
can be synthesized and optimized (in terms of footprint 
and timing requirements) to a customizable Java 
processor. The use of the proposed API is illustrated in 
the paper by means of a case study that implements a 
crane control system. This case study highlights the 
benefits and advantages on using the proposed API. 

1. Introduction 
Real-time embedded systems (RTES) are ubiquosly 

present in our daily life. It is expected that new 
generation of these systems will have more functions, 
increasing considerably its complexity. A prominent 
solution for handling complexity is the use of object-
orientations concepts. Therefore, Java has gained 
popularity in embedded real-time systems 
development. 

The Real-Time Specification for Java (RTSJ) [1] is 
an Application Programming Interface (API) that 
allows the creation,verification, execution, and 
management of Java-based real-time applications. 
Quite recently, some Java Virtual Machines (JVM) that 
fully support the RTSJ have been made available. The 
TimeSys RTSJ Reference Implementation (RI) [10] 
was the first RTJVM that implements all mandatory 
features in the RTSJ and is based on the Java 2 Micro 
Edition (J2ME) JVM running on Linux OS. Sun Labs’ 
Mackinac [9] aims to allow the use of Java in physical 
systems control. A third example is the JRate [11] that 
is an open-source RTSJ-based extension to GNU 
Compiler for Java (GCJ) runtime systems. This 

proposal is a little different than the afore mentioned 
ones, because the Java application is ahead-of-time 
compiled into native code that means there is no JVM.  

These implementations, however, are not targeted 
for the embedded systems domain, on which footprint 
requirements are of equal importance as real-time 
requirements. The Sashimi environment (see [7]) is an 
example of JVM optimization for embedded systems. 
The main concept of this proposal is the use of a 
configurable Java processor, called FemtoJava [7], 
which natively executes Java bytecodes and is 
optimized to execute only opcodes effective needed by 
application. The hardware is modified to fit application 
(software) requirements and not the other way around, 
as usual in most programming environments  

However, as originally proposed, the Sashimi 
environment lacks a programming model for 
representing concurrency and real-time constraints. The 
goal of the current work is to overcome this limitation 
by providing an RTSJ-based API that supports the 
specification of concurrent tasks and also the 
specification of timing constraints. Using the provided 
API together with Sashimi environment, programmers 
can develop concurrent real-time applications and 
synthesize them into the FemtoJava processor. 

The remaining of the paper is divided as follows: 
section 2 gives an overview on the Sashimi 
environment and the FemtoJava processor. Section 3 
details the proposed API by describing its class 
hierarchy and section 4 presents a case study that 
elucidates the use of the proposed API, remarking the 
achieved benefits. Finally, section 5 highlights some 
conclusions and signals future work directions. 

2. Sashimi Environment 
Sashimi adopts Java as specification language for 

deploying embedded systems. In order to fulfill the 
environment constraints, some programming 
restrictions must be followed. For example, only 
integer numbers are allowed, and programmers should 
only use APIs provided by the Sashimi environment 
rather than the standard Java-API. Additionally, 



designers should use only static methods and attributes, 
since there is no support for object allocation. 
Additionaly, the use of inheritance in class hierarchy 
and method polymorphism, key concepts in the object 
oriented development, are also not supported. 

Using the Sashimi environment, Java-based 
specifications are translated into bytecodes by using 
standard Java compilers. The generated classes can be 
tested using libraries that emulate the Sashimi API in 
the development host. Based on the generated 
bytecodes, the application and the FemtoJava processor 
are synthesized. The control unit for the FemtoJava 
processor is generated, supporting only the opcodes 
used by that application. The size of its control unit is 
directly proportional to the number of different 
opcodes utilized by the application software, making it 
suitable for embedded applications. Different 
scheduling algorithms are supported by Sashimi. An 
evaluation of the impact of these algorithms in terms of 
footprint, power consumption and real-time 
performance are described in [5]. A drawback of the 
Sashimi environment is the lack of high-level 
constructs, forcing designers to use low-level system 
calls to generate concurrent processing and to interact 
with the scheduler. Additionally, there is no mechanism 
to express clearly the tasks timing constraints.  

3. The Proposed API 
The main purpose of the developed API is to 

overcome  drawbacks of the Sashimi environment 
related to the use of low level constructs to schedule 
concurrent processes. Moreover, it should facilitate the 
fulfillment of timing constraints.  

As previously mentioned, this new API is based in 
the RTSJ [1]. It makes use of  the concept of 
schedulable objects, which are instances of classes that 
implement the Schedulable interface, such as 
RealtimeThread. The RTSJ-based API provides 
support to the following concepts: time values 
(absolute and relative time), timers, periodic and 
aperiodic tasks, and scheduling policies. The term 
‘task’ derives from the scheduling literature, 
representing a schedulable element within the system 
context, on other words, a schedulable object. Follows 
a brief description of the main classes: 
• Real-timeThread: extends the default class 
“Thread” and represents a real-time task in the 
embedded system. The task can be periodic or 
aperiodic, depending on the given release parameter 
object. 
• ReleaseParameters: base class for all release 
parameters of a real-time task. It has attributes like cost 
(required CPU processing time), task deadline, and 

others. Its subclasses are PeriodicParameters and 
AperiodicParameters, which represent release 
parameter for periodic and aperiodic tasks. 
• SchedulingParametes: represents all scheduling 
parameters that are used by the Scheduler object. 
PriorityParameters is a class that represents the task 
priority and that can be used by scheduling mechanisms 
as the PriorityScheduler. 
• Scheduler: abstract class that represents the 
scheduler itself. Its subclasses “PriorityScheduler”, 
“RateMonotonicScheduler”, and “EDFScheduler” 
represent, respectively, fixed priority, rate monotonic 
and earliest deadline first scheduling algorithms. 
• HighResolutionTime: base class for all classes that 
represent a time value. The subclass “AbsoluteTime” 
represents an absolute instant of time which is based in 
the same date/time reference as specified in Java Date 
class [8]. The subclass RelativeTime represents a time 
relative to other time instant that is given as parameter.  
• Clock: represents a global clock reference. This class 
returns an AbsoluteTime object that represents the 
current date and time of the system. 
• Timer: abstract class that represents a system timer. 
The derived class OneShotTimer represents a single 
occurrence timer, and the derived class PeriodicTimer 
represents a periodic one. 

The implementations for some of the proposed API 
classes have slightly differences to the proposed in 
RTSJ. This is due to constraints in the FemtoJava 
architecture and also some implemented extensions. An 
example of such differences is in the RealtimeThread 
class which has two abstract methods that must be 
implemented in the derived subclasses: mainTask() and 
exceptionTask(). They represent, respectively, the task 
body (equivalent to the run() method from a normal 
Java Thread) and the exception handling code applied 
for deadlines misses. The latter substitute the use of an 
AsyncEventHandler object, which should be passed to 
the ReleaseParameters object, as specified in the RTSJ. 
If the task deadline is missed, the task execution flow 
deviates to the exceptionTask() code. After the 
exception handling code execution, if the task is 
periodic, than the run() method should be restarted. 
This difference was proposed to provide support to 
scheduling algorithms that use the concept of task-
pairs, like the Time-Aware Fault-Tolerant (TAFT) 
scheduler [3], which allows the implementation of 
adaptive behavior.  

As mentioned in section 2, the original version of 
the Sashimi environment provided no support for 
object creation. Therefore, some extensions were 
introduced in order to provide full support for the 
proposed API in the FemtoJava platform. Firstly it was 



necessary to extend the Sashimi environment with 
support to the synthesis of objects. According to the 
performed modifications, applications objects are 
statically allocated at synthesis time. In other words, all 
objects in the system are defined a priori, allowing the 
determination of the total memory necessary to store 
them into the RAM. Although such practice may incurs 
into higher memory usage, it is a suitable practice in 
real-time development, as it avoids the use of the 
garbage collector, which usually introduces non 
tolerable overheads that can not be tolerated by real-
time applications.  

The FemtoJava microprocessor also needed to be 
expanded to support the proposed API: four new 
opcodes were introduced: getfield, putfield, 
invokevirtual and invokspecial. The first two opcodes 
are related to object fields’ access. They are used, 
respectively, for getting and setting values. The other 
two opcodes are related to method invocation. Another 
required change in the FemtoJava microprocessor is the 
addition of a real-time clock, used to provide the notion 
of time in the embedded system. This clock should be 
used both by the API elements and also by the 
scheduling layer. 

4. Case Study 
The crane control system, proposed as a benchmark 

for system level modeling [2] has been used as case 
study to validate the proposed Sashimi extensions. The 
design solution to be presented along the section 
follows the UML model of the crane system that is 
presented in [4]. 

An important aspect from this diagram is that it is 
decorated with stereotypes derived from the UML 
profile for performance, schedulability, and time, or 
simply UML-RT [6]. An example from such 
stereotypes is the «SASchedulable», which denotes a 
concurrent task in the system (see Controller class). 
Analyzing the object collaboration diagram presented 
in Fig. 1, we can observe the Controller class is also 
decorated with the stereotypes «SATrigger» and 
«SAResponse», which indicate, respectively, that this 
task is triggered periodically every 10 ms, with a 
deadline of 10 ms.  

For the sake of paper length’s limitation, although 
the system includes several classes (see Table 1) only 
the “CraneInitializer” and “Controller” classes will be 
discussed. Nevertheless, these classes are 
representative enough to depict the use of the API 
elements. 

The main class from the crane system 
implementation is named “CraneInitializer”. This class 
is responsible for objects allocation, initialization, and 

starting (applied for the real-time tasks). Its source 
code is depicted in Table 1.and one can observe that 
only static objects are allocated.  

 

 
Fig. 1. Object Collaboration Diagram 

 
Another important aspect from the code of Table 1 

relates to the initSystem() method, which represents the 
starting point from the application execution flow and 
provides objects initialization and real-time tasks 
startup. The real-time tasks startup can be identified by 
the call to the start() method.  

 
Table 1. Main class for the Crane System 

public class CraneInitializer { 
   // Application objects allocation 
   public static Controller nominalCtrl = new 

Controller(); 
   public static ConsoleInterface 

ConsoleInterface = new 
ConsoleInterface(); 

   public static DesiredPosition 
desiredPosition = new DesiredPosition(); 

   public static BreakInterface  
breakInterface = new BreakInterface(); 

   public static void initSystem() { 
      ... //Object initializations 
      // Real-time tasks startup: 
      Crane.nominalCtrl.start(); 
      ... //startup remaining tasks 
      while (true) FemtoJava.sleep(); 
   } 
}; 

 
The following discussion relates to the Controller 

class, on which the associated stereotype denotes a 
concurrent real-time task in the system. As previously 
mentioned, this task must be periodically activated 
every 10 ms, with a deadline of 10 ms. To implement 
such features using the provided API, the Controller 
class needs to inherit from “RealtimeThread”, as shown 
in Table 2. as well as to make use of the class 



PeriodicParameters from the API, whose instance is 
passed as parameter for the constructor. A 
“RelativeTime” object is used to represent the 10 
miliseconds time for the task period and deadline. The 
mainTask() method represents the task body, that is, 
the code executed when the task is activated by calling 
the start() method. The exceptionTask() method 
represents the exception handling code that is triggered 
in case of deadline miss. 

 
Table 2. Controller Class 

import saito.sashimi.realtime.*; 
public class Controller extends RealtimeThread  
{   private static RelativeTime  
            _10_ms = new RelativeTime(0,10,0); 
   private static PeriodicParameters 

schedParams = new PeriodicParameters( 
 null,   // start time 
 null,   // end time 
 _10_ms, // period 
 null,   // cost 
 _10_ms);// deadline 

   ... // constructor and other methods 
   public void mainTask() { 
      Crane.breakInterface.release(); 
      // periodic loop 
      while(isRunning == true){ 
         this.controll(); 
         Crane.monitorInterface.setVC(m_vc); 
         this.waitForNextPeriod(); 
      } 
   } 
   private int controll() { ... } 
   public void exceptionTask() { 
      // handle deadline missing 
   } 
}; 

 
The next step in the project cycle is to synthesize the 

embedded system. The Sashimi enviroment that takes 
as input the Java class files, generated by the Java 
compiler, to generate the hardware from the FemtoJava 
processor (in form of VHDL files) and the software of 
the embedded system.  

It is important to highlight that the hardware 
generated by Sashimi is optimized because it supports 
only the Java opcodes used by the embedded system 
software, economizing in area, which is a design 
constraint from actual embedded systems. Another 
point to be observed is that once the application objects 
are allocated at synthesis time, there is no need for 
using a garbage collector providing the required 
determinism from real-time embedded applications. 

5. Conclusions and Future Work 
The current work presented an API based on the 

RTSJ that optimizes real-time embedded systems 
development. This API is target to the FemtoJava 
processor, which is a stack-based processor specially 
design to execute Java bytecodes. Using the provided 

API, programmers can make use of high-level 
mechanisms to represent concurrency and timing 
constraints in their Java applications.  

To keep the proposed API as close as possible to the 
RTSJ, minor modifications were provided. These 
changes relates basically on how one can define a 
timeout exception handler for the concurrent real-time 
tasks operations, which is applied as the operation 
violates its deadline. The provided method provides a 
clear code, which is considered easier to be understood.  

For future work, authors intend to adapt the used 
modeling tool to provide code generation from the 
UML diagrams to Java using the API elements. 
Therefore, it will be possible to generate the embedded 
application directly from the UML level.  
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