
RTSJ-based API for Real-Time Embedded Systems

Marco A. Wehrmeister
Computer Science Institute

Federal University of Rio Grande
do Sul, Brazil

mawehrmeister@inf.ufrgs.br

Leandro B. Becker
Automation and Control Systems

Department
Federal University of Santa

Catarina, Brazil
lbecker@das.ufsc.br

Carlos Eduardo Pereira
Electrical Engineering Department
Federal University of Rio Grande

do Sul, Brazil
cpereira@eletro.ufrgs.br

Abstract

Java’s popularity in the real-time embedded

systems domain has grown significantly over the last
years. This popularity influenced the definition of the
Real-Time Specification for Java (RTSJ), which is a
high-level programming interface for real-time
applications written in Java. This paper describes an
RTJS-based API, which aims to facilitate the
development of real-time embedded systems by
including high-level constructs for concurrent real-
time computation.Further, the developed application
can be synthesized and optimized (in terms of footprint
and timing requirements) to a customizable Java
processor. The use of the proposed API is illustrated in
the paper by means of a case study that implements a
crane control system. This case study highlights the
benefits and advantages on using the proposed API.

1. Introduction
Real-time embedded systems (RTES) are ubiquosly

present in our daily life. It is expected that new
generation of these systems will have more functions,
increasing considerably its complexity. A prominent
solution for handling complexity is the use of object-
orientations concepts. Therefore, Java has gained
popularity in embedded real-time systems
development.

The Real-Time Specification for Java (RTSJ) [1] is
an Application Programming Interface (API) that
allows the creation,verification, execution, and
management of Java-based real-time applications.
Quite recently, some Java Virtual Machines (JVM) that
fully support the RTSJ have been made available. The
TimeSys RTSJ Reference Implementation (RI) [10]
was the first RTJVM that implements all mandatory
features in the RTSJ and is based on the Java 2 Micro
Edition (J2ME) JVM running on Linux OS. Sun Labs’
Mackinac [9] aims to allow the use of Java in physical
systems control. A third example is the JRate [11] that
is an open-source RTSJ-based extension to GNU
Compiler for Java (GCJ) runtime systems. This

proposal is a little different than the afore mentioned
ones, because the Java application is ahead-of-time
compiled into native code that means there is no JVM.

These implementations, however, are not targeted
for the embedded systems domain, on which footprint
requirements are of equal importance as real-time
requirements. The Sashimi environment (see [7]) is an
example of JVM optimization for embedded systems.
The main concept of this proposal is the use of a
configurable Java processor, called FemtoJava [7],
which natively executes Java bytecodes and is
optimized to execute only opcodes effective needed by
application. The hardware is modified to fit application
(software) requirements and not the other way around,
as usual in most programming environments

However, as originally proposed, the Sashimi
environment lacks a programming model for
representing concurrency and real-time constraints. The
goal of the current work is to overcome this limitation
by providing an RTSJ-based API that supports the
specification of concurrent tasks and also the
specification of timing constraints. Using the provided
API together with Sashimi environment, programmers
can develop concurrent real-time applications and
synthesize them into the FemtoJava processor.

The remaining of the paper is divided as follows:
section 2 gives an overview on the Sashimi
environment and the FemtoJava processor. Section 3
details the proposed API by describing its class
hierarchy and section 4 presents a case study that
elucidates the use of the proposed API, remarking the
achieved benefits. Finally, section 5 highlights some
conclusions and signals future work directions.

2. Sashimi Environment
Sashimi adopts Java as specification language for

deploying embedded systems. In order to fulfill the
environment constraints, some programming
restrictions must be followed. For example, only
integer numbers are allowed, and programmers should
only use APIs provided by the Sashimi environment
rather than the standard Java-API. Additionally,

designers should use only static methods and attributes,
since there is no support for object allocation.
Additionaly, the use of inheritance in class hierarchy
and method polymorphism, key concepts in the object
oriented development, are also not supported.

Using the Sashimi environment, Java-based
specifications are translated into bytecodes by using
standard Java compilers. The generated classes can be
tested using libraries that emulate the Sashimi API in
the development host. Based on the generated
bytecodes, the application and the FemtoJava processor
are synthesized. The control unit for the FemtoJava
processor is generated, supporting only the opcodes
used by that application. The size of its control unit is
directly proportional to the number of different
opcodes utilized by the application software, making it
suitable for embedded applications. Different
scheduling algorithms are supported by Sashimi. An
evaluation of the impact of these algorithms in terms of
footprint, power consumption and real-time
performance are described in [5]. A drawback of the
Sashimi environment is the lack of high-level
constructs, forcing designers to use low-level system
calls to generate concurrent processing and to interact
with the scheduler. Additionally, there is no mechanism
to express clearly the tasks timing constraints.

3. The Proposed API
The main purpose of the developed API is to

overcome drawbacks of the Sashimi environment
related to the use of low level constructs to schedule
concurrent processes. Moreover, it should facilitate the
fulfillment of timing constraints.

As previously mentioned, this new API is based in
the RTSJ [1]. It makes use of the concept of
schedulable objects, which are instances of classes that
implement the Schedulable interface, such as
RealtimeThread. The RTSJ-based API provides
support to the following concepts: time values
(absolute and relative time), timers, periodic and
aperiodic tasks, and scheduling policies. The term
‘task’ derives from the scheduling literature,
representing a schedulable element within the system
context, on other words, a schedulable object. Follows
a brief description of the main classes:
• Real-timeThread: extends the default class
“Thread” and represents a real-time task in the
embedded system. The task can be periodic or
aperiodic, depending on the given release parameter
object.
• ReleaseParameters: base class for all release
parameters of a real-time task. It has attributes like cost
(required CPU processing time), task deadline, and

others. Its subclasses are PeriodicParameters and
AperiodicParameters, which represent release
parameter for periodic and aperiodic tasks.
• SchedulingParametes: represents all scheduling
parameters that are used by the Scheduler object.
PriorityParameters is a class that represents the task
priority and that can be used by scheduling mechanisms
as the PriorityScheduler.
• Scheduler: abstract class that represents the
scheduler itself. Its subclasses “PriorityScheduler”,
“RateMonotonicScheduler”, and “EDFScheduler”
represent, respectively, fixed priority, rate monotonic
and earliest deadline first scheduling algorithms.
• HighResolutionTime: base class for all classes that
represent a time value. The subclass “AbsoluteTime”
represents an absolute instant of time which is based in
the same date/time reference as specified in Java Date
class [8]. The subclass RelativeTime represents a time
relative to other time instant that is given as parameter.
• Clock: represents a global clock reference. This class
returns an AbsoluteTime object that represents the
current date and time of the system.
• Timer: abstract class that represents a system timer.
The derived class OneShotTimer represents a single
occurrence timer, and the derived class PeriodicTimer
represents a periodic one.

The implementations for some of the proposed API
classes have slightly differences to the proposed in
RTSJ. This is due to constraints in the FemtoJava
architecture and also some implemented extensions. An
example of such differences is in the RealtimeThread
class which has two abstract methods that must be
implemented in the derived subclasses: mainTask() and
exceptionTask(). They represent, respectively, the task
body (equivalent to the run() method from a normal
Java Thread) and the exception handling code applied
for deadlines misses. The latter substitute the use of an
AsyncEventHandler object, which should be passed to
the ReleaseParameters object, as specified in the RTSJ.
If the task deadline is missed, the task execution flow
deviates to the exceptionTask() code. After the
exception handling code execution, if the task is
periodic, than the run() method should be restarted.
This difference was proposed to provide support to
scheduling algorithms that use the concept of task-
pairs, like the Time-Aware Fault-Tolerant (TAFT)
scheduler [3], which allows the implementation of
adaptive behavior.

As mentioned in section 2, the original version of
the Sashimi environment provided no support for
object creation. Therefore, some extensions were
introduced in order to provide full support for the
proposed API in the FemtoJava platform. Firstly it was

necessary to extend the Sashimi environment with
support to the synthesis of objects. According to the
performed modifications, applications objects are
statically allocated at synthesis time. In other words, all
objects in the system are defined a priori, allowing the
determination of the total memory necessary to store
them into the RAM. Although such practice may incurs
into higher memory usage, it is a suitable practice in
real-time development, as it avoids the use of the
garbage collector, which usually introduces non
tolerable overheads that can not be tolerated by real-
time applications.

The FemtoJava microprocessor also needed to be
expanded to support the proposed API: four new
opcodes were introduced: getfield, putfield,
invokevirtual and invokspecial. The first two opcodes
are related to object fields’ access. They are used,
respectively, for getting and setting values. The other
two opcodes are related to method invocation. Another
required change in the FemtoJava microprocessor is the
addition of a real-time clock, used to provide the notion
of time in the embedded system. This clock should be
used both by the API elements and also by the
scheduling layer.

4. Case Study
The crane control system, proposed as a benchmark

for system level modeling [2] has been used as case
study to validate the proposed Sashimi extensions. The
design solution to be presented along the section
follows the UML model of the crane system that is
presented in [4].

An important aspect from this diagram is that it is
decorated with stereotypes derived from the UML
profile for performance, schedulability, and time, or
simply UML-RT [6]. An example from such
stereotypes is the «SASchedulable», which denotes a
concurrent task in the system (see Controller class).
Analyzing the object collaboration diagram presented
in Fig. 1, we can observe the Controller class is also
decorated with the stereotypes «SATrigger» and
«SAResponse», which indicate, respectively, that this
task is triggered periodically every 10 ms, with a
deadline of 10 ms.

For the sake of paper length’s limitation, although
the system includes several classes (see Table 1) only
the “CraneInitializer” and “Controller” classes will be
discussed. Nevertheless, these classes are
representative enough to depict the use of the API
elements.

The main class from the crane system
implementation is named “CraneInitializer”. This class
is responsible for objects allocation, initialization, and

starting (applied for the real-time tasks). Its source
code is depicted in Table 1.and one can observe that
only static objects are allocated.

Fig. 1. Object Collaboration Diagram

Another important aspect from the code of Table 1

relates to the initSystem() method, which represents the
starting point from the application execution flow and
provides objects initialization and real-time tasks
startup. The real-time tasks startup can be identified by
the call to the start() method.

Table 1. Main class for the Crane System

public class CraneInitializer {
 // Application objects allocation
 public static Controller nominalCtrl = new

Controller();
 public static ConsoleInterface

ConsoleInterface = new
ConsoleInterface();

 public static DesiredPosition
desiredPosition = new DesiredPosition();

 public static BreakInterface
breakInterface = new BreakInterface();

 public static void initSystem() {
 ... //Object initializations
 // Real-time tasks startup:
 Crane.nominalCtrl.start();
 ... //startup remaining tasks
 while (true) FemtoJava.sleep();
 }
};

The following discussion relates to the Controller

class, on which the associated stereotype denotes a
concurrent real-time task in the system. As previously
mentioned, this task must be periodically activated
every 10 ms, with a deadline of 10 ms. To implement
such features using the provided API, the Controller
class needs to inherit from “RealtimeThread”, as shown
in Table 2. as well as to make use of the class

PeriodicParameters from the API, whose instance is
passed as parameter for the constructor. A
“RelativeTime” object is used to represent the 10
miliseconds time for the task period and deadline. The
mainTask() method represents the task body, that is,
the code executed when the task is activated by calling
the start() method. The exceptionTask() method
represents the exception handling code that is triggered
in case of deadline miss.

Table 2. Controller Class

import saito.sashimi.realtime.*;
public class Controller extends RealtimeThread
{ private static RelativeTime
 _10_ms = new RelativeTime(0,10,0);
 private static PeriodicParameters

schedParams = new PeriodicParameters(
 null, // start time
 null, // end time
 _10_ms, // period
 null, // cost
 _10_ms);// deadline

 ... // constructor and other methods
 public void mainTask() {
 Crane.breakInterface.release();
 // periodic loop
 while(isRunning == true){
 this.controll();
 Crane.monitorInterface.setVC(m_vc);
 this.waitForNextPeriod();
 }
 }
 private int controll() { ... }
 public void exceptionTask() {
 // handle deadline missing
 }
};

The next step in the project cycle is to synthesize the

embedded system. The Sashimi enviroment that takes
as input the Java class files, generated by the Java
compiler, to generate the hardware from the FemtoJava
processor (in form of VHDL files) and the software of
the embedded system.

It is important to highlight that the hardware
generated by Sashimi is optimized because it supports
only the Java opcodes used by the embedded system
software, economizing in area, which is a design
constraint from actual embedded systems. Another
point to be observed is that once the application objects
are allocated at synthesis time, there is no need for
using a garbage collector providing the required
determinism from real-time embedded applications.

5. Conclusions and Future Work
The current work presented an API based on the

RTSJ that optimizes real-time embedded systems
development. This API is target to the FemtoJava
processor, which is a stack-based processor specially
design to execute Java bytecodes. Using the provided

API, programmers can make use of high-level
mechanisms to represent concurrency and timing
constraints in their Java applications.

To keep the proposed API as close as possible to the
RTSJ, minor modifications were provided. These
changes relates basically on how one can define a
timeout exception handler for the concurrent real-time
tasks operations, which is applied as the operation
violates its deadline. The provided method provides a
clear code, which is considered easier to be understood.

For future work, authors intend to adapt the used
modeling tool to provide code generation from the
UML diagrams to Java using the API elements.
Therefore, it will be possible to generate the embedded
application directly from the UML level.

6. Acknowledgements
This work has been partly supported by the

Brazilian research agency CNPq within the scope of
the SEEP research project.

7. References
[1] Bollella, Greg; Gosling, James; Brosgol, Benjamin (2001).

“The Real-Time Specification for Java”, http://www.rtj.org/rtsj-
V1.0.pdf

[2] E. Moser and W. Nebel. Case Study: System Model of Crane
and Embedded Control. In: Proceedings of DATE’1999 –
Design, Automation and Test in Europe, Munich, Germany,
March 1999

[3] E. Nett, M. Gergeleit, and M. Mock “Enhancing OO
Middleware to become Time-Awere”, Special Issue on Real-
Time Middleware in Real-Time Systems, 20(2): 211-228,
March, 2001, Kluwer Academic Publisher. ISSN-0922-6443.

[4] L. Brisolara, L.B. Becker, L. Carro, F. Wagner, and C.E.
Pereira. Evaluating High-level Models for Real-Time
Embedded Systems Design. To be published in: IFIP Working
Conference on Distributed and Parallel Embedded Systems.
Toulouse, France. 2004.

[5] L.B. Becker, M.A. Wehrmeister, L. Carro, F. Wagner, and C.E.
Pereira. Evaluating High-level Models for Real-Time
Embedded Systems Design. To be published in: 29th
Workshop on Real-Time Programming. Istanbul, Turkey, 2004.

[6] Object Management Group (2003). “UML Profile for
Schedulability, Performance and Time Specification”,
http://www.omg.org/cgi-bin/doc?ptc/02-03-03

[7] S.A.Ito, L.Carro, R.P.Jacobi. “Making Java Work for
Microcontroller Applications”. IEEE Design & Test of
Computers, vol. 18, n. 5, Sept/Oct. 2001, pp. 100-110

[8] Sun Microsystems, “Java 2 Platform Api Specification”,
http://java.sun.com/j2se/1.4.2/docs/api/

[9] J. Heiss. “From Rockets to Power Plants to Automobiles A
Conversation with Real-Time Specification for Java Expert”,
http://java.sun.com/developer/technicalArticles/Interviews/Boll
ella_qa.html

[10] TimeSys. “Java Reference Implementation (RI)”,
http://www.timesys.com/index.cfm?bdy=java_bdy_ri.cfm

[11] A. Corsaro, D. Schmidt. “Evaluating Real-Time Java Features
and Performance for Real-Time Embedded Systems”, In:
Proceedings of RTAS'02 - VIII Real-Time and Embedded
Technology and Applications Symposium, p.90, September,
2002

